澳门威尼斯人赌场官网-澳门网上赌场_百家乐规则_全讯网ceo (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

星期8百家乐官网的玩法技巧和规则| 威尼斯人娱乐网可信吗| 百家乐官网号解码器| 单机百家乐在线小游戏| 金山区| 大中华百家乐官网的玩法技巧和规则 | 冀州市| 尊龙百家乐赌场娱乐网规则| 澳门百家乐官网新濠天地| 大发888yulecheng| 澳门百家乐官网鸿福厅| 百家乐官网园有限公司| 德州扑克概率计算| 百家乐美女视频聊天| 澳门顶级赌场金沙| 澳门百家乐官网出千吗| 娱乐网百家乐的玩法技巧和规则 | 百家百家乐官网网站| 名人百家乐官网的玩法技巧和规则| bet365娱乐官网| 正品百家乐游戏| 缅甸百家乐官网赌场| 大发888娱乐城xiazai| 百家乐投注必胜法| 赌场百家乐官网规则| 一二博国际| 百家乐游戏机出千| 在线百家乐官网纸牌游戏| 久盛国际| 大发888官网免费下载| 宝马会百家乐娱乐城| 澳门百家乐官网手机软件| 百家乐官网作弊手段| 十六浦娱乐城| 新锦江百家乐娱乐场开户注册| 新澳博百家乐官网现金网| 大发888大发888官网| 澳门百家乐加盟| 大发888私网开户| 百家乐如何看牌| 淘宝博百家乐官网的玩法技巧和规则 |